Barkhof, F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol., 15: 239–245, 2002; doi:10.1097/00019052-200206000-00003
Barkhof, F., Van Waesberghe, J.H.T.M., Filippi, M., Yousry, T., Miller, D.H., Hahn, D., Thompson, A.J., Kappos, L., Brex, P., Pozzilli, C., Polman, C.H. T1 hypointense lesions in secondary progressive multiple sclerosis: Effect of interferon beta-1b treatment. Brain, 124: 1396–1402, 2001; doi:10.1093/brain/124.7.1396
Benedict, R.H.B., Zivadinov, R. Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat. Rev. Neurol., 7: 332–342, 2011; doi:10.1038/nrneurol.2011.61
Bodini, B., Cercignani, M., Toosy, A., Stefano, N. De, Miller, D.H., Thompson, A.J., Ciccarelli, O. A novel approach with “skeletonised MTR” measures tract-specific microstructural changes in early primary-progressive MS. Hum. Brain Mapp., 35: 723–733, 2014; doi:10.1002/hbm.22196
Dal-Bianco, A., Grabner, G., Kronnerwetter, C., Weber, M., Höftberger, R., Berger, T., Auff, E., Leutmezer, F., Trattnig, S., Lassmann, H., Bagnato, F., Hametner, S. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol., 133: 25–42, 2017; doi:10.1007/s00401-016-1636-z
Dalton, C.M., Miszkiel, K A., Barker, G.J., MacManus, D.G., Pepple, T.I., Panzara, M., Yang, M., Hulme, A., O’Connor, P., Miller, D.H. Effect of natalizumab on conversion of gadolinium enhancing lesions to T1 hypointense lesions in relapsing multiple sclerosis. J. Neurol., 251: 398–402, 2004; doi:10.1007/s00415-004-0332-4
Filippi, M., Rocca, M A., Ciccarelli, O., De Stefano, N., Evangelou, N., Kappos, L., Rovira, A., Sastre-Garriga, J., Tintoré, M., Frederiksen, J.L., Gasperini, C., Palace, J., Reich, D.S., Banwell, B., Montalban, X., Barkhof, F. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol., 15: 292–303, 2016; doi:10.1016/S1474-4422(15)00393-2
Filippi, M., Rocca, M.A., Martino, G., Horsfield, M.A., Comi, G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol., 43: 41–49, 1998; doi:10.1002/ana.410430616
Filippi, M., Rovaris, M., Rocca, M.A., Sormani, M.P., Wolinsky, J.S., Comi, G. Glatiramer acetate reduces the proportion of new MS lesions evolving into “black holes.” Neurology, 57: 731–733, 2001; doi:10.1212/WNL.57.4.731
Geraldes, R., Ciccarelli, O., Barkhof, F., De Stefano, N., Enzinger, C., Filippi, M., Hofer, M., Paul, F., Preziosa, P., Rovira, A., DeLuca, G. C., Kappos, L., Yousry, T., Fazekas, F., Frederiksen, J., Gasperini, C., Sastre-Garriga, J., Evangelou, N., Palace, J. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat. Rev. Neurol., 14: 199–213, 2018; doi:10.1038/nrneurol.2018.14
Granziera, C., Wuerfel, J., Barkhof, F., Calabrese, M., De Stefano, N., Enzinger, C., Evangelou, N., Filippi, M., Geurts, J.J.G., Reich, D.S., Rocca, M.A., Ropele, S., Rovira, À., Sati, P., Toosy, A. T., Vrenken, H., Gandini Wheeler-Kingshott, C.A.M., Kappos, L. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 144: 1296–1311, 2021; doi:10.1093/brain/awab029
Grigoriadis, N., van Pesch, V. A basic overview of multiple sclerosis immunopathology. Eur. J. Neurol., 22: 3–7, 2015; doi:10.1111/ene.12798
Hametner, S., Endmayr, V., Deistung, A., Palmrich, P., Prihoda, M., Haimburger, E., Menard, C., Feng, X., Haider, T., Leisser, M., Köck, U., Kaider, A., Höftberger, R., Robinson, S., Reichenbach, J.R., Lassmann, H., Traxler, H., Trattnig, S., Grabner, G. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neuroimage, 179: 117–126, 2018; doi:10.1016/j.neuroimage.2018.06.007
Koudriavtseva, T., Thompson, A.J., Fiorelli, M., Gasperini, C., Bastianello, S., Bozzao, A., Paolillo, A., Pisani, A., Galgani, S., Pozzilli, C., Sapienza, L., Koudriavtseva, T. Gadolinium enhanced MRI predicts clinical and MRI disease activity in relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 62: 285, 1997; doi:10.1136/jnnp.62.3.285
Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology, 33: 1444–1452, 1983; doi:10.1212/wnl.33.11.1444
Langkammer, C., Krebs, N., Goessler, W., Scheurer, E., Ebner, F., Yen, K., Fazekas, F., Ropele, S. Quantitative MR imaging of brain iron: A postmortem validation study. Radiology, 257: 455–462, 2010; doi:10.1148/radiol.10100495
Lassmann, H., Brück, W., Lucchinetti, C.F. The immunopathology of multiple sclerosis: An overview. Brain Pathol., 17: 210–218, 2007; doi:10.1111/j.1750-3639.2007.00064.x
Laule, C., Moore, G.R.W. Myelin water imaging to detect demyelination and remyelination and its validation in pathology. Brain Pathol., 28: 750–764, 2018; doi:10.1111/bpa.12645
Learmonth, Y.C., Motl, R.W., Sandroff, B.M., Pula, J.H., Cadavid, D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol., 13: 37, 2013; doi:10.1186/1471-2377-13-37
Lesjak, Ž., Galimzianova, A., Koren, A., Lukin, M., Pernuš, F., Likar, B., Špiclin, Ž. A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics, 16: 51–63, 2018; doi:10.1007/s12021-017-9348-7
Lövblad, K.O., Anzalone, N., Dörfler, A., Essig, M., Hurwitz, B., Kappos, L., Lee, S.K., Filippi, M. MR imaging in multiple sclerosis: Review and recommendations for current practice. AJNR Am. J. Neuroradiol., 31: 983–989, 2010; doi:10.3174/ajnr.A1906
Martire, M.S., Moiola, L., Rocca, M.A., Filippi, M., Absinta, M. What is the potential of paramagnetic rim lesions as diagnostic indicators in multiple sclerosis? Expert Rev. Neurother., 22: 1075–1084, 2022; doi:10.1080/14737175.2022.2143265
Masdeu, J.C., Moreira, J., Trasi, S., Visintainer, P., Cavaliere, R., Grundman, M. The open ring: A new imaging sign in demyelinating disease. J. Neuroimaging, 6: 104–107, 1996; doi:10.1111/jon199662104
McDonald, W.I., Compston, A., Edan, G., Goodkin, D., Hartung, H.P., Lublin, F.D., McFarland, H.F., Paty, D.W., Polman, C.H., Reingold, S.C., Sandberg-Wollheim, M., Sibley, W., Thompson, A., van den Noort, S., Weinshenker, B.Y., Wolinsky, J.S. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol., 50: 121-127, 2001; doi:10.1002/ana.1032
Miller, D.H., Barkhof, F., Nauta, J.J.P. Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain, 116: 1077–1094, 1993; doi:10.1093/brain/116.5.1077
Minagar, A., Alexander, J.S. Blood-brain barrier disruption in multiple sclerosis. Mult. Scler. J., 9: 540–549, 2003; doi:10.1191/1352458503ms965oa
Morgen, K., Jeffries, N. O., Stone, R., Martin, R., Richert, N.D., Frank, J.A., McFarland, H.F. Ring-enhancement in multiple sclerosis: Marker of disease severity. Mult. Scler. J., 7: 167, 2001; doi:10.1177/135245850100700306
Naismith, R.T., Xu, J., Tutlam, N.T., Scully, P.T., Trinkaus, K., Snyder, A.Z., Song, S.K., Cross, A.H. Increased diffusivity in acute multiple sclerosis lesions predicts risk of black hole. Neurology, 74: 1694–1701, 2010; doi:10.1212/WNL.0b013e3181e042c4
Oh, J., Ontaneda, D., Azevedo, C., Klawiter, E. C., Absinta, M., Arnold, D. L., Bakshi, R., Calabresi, P.A., Crainiceanu, C., Dewey, B., Freeman, L., Gauthier, S., Henry, R., Inglese, M., Kolind, S., Li, D.K.B., Mainero, C., Menon, R.S., Nair, G., Reich, D.S. Imaging outcome measures of neuroprotection and repair in MS: A consensus statement from NAIMS. Neurology, 92: 1101–1111, 2019; doi:10.1212/WNL.0000000000007099
Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M., Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F. D., Montalban, X., O’Connor, P., Sandberg-Wollheim, M., Thompson, A.J., Waubant, E., Weinshenker, B., Wolinsky, J.S. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol., 69: 292–302, 2011; doi:10.1002/ana.22366
Rocca, M.A., Cercignani, M., Iannucci, G., Comi, G., Filippi, M. Weekly diffusion-weighted imaging of normal-appearing white matter in MS. Neurology, 55: 882–884, 2000; doi:10.1212/WNL.55.6.882
Rocca, M.A., Comi, G., Filippi, M. The role of T1-weighted derived measures of neurodegeneration for assessing disability progression in multiple sclerosis. Front. Neurol., 8: 433, 2017; doi:10.3389/fneur.2017.00433
Rovira, À., Doniselli, F.M., Auger, C., Haider, L., Hodel, J., Severino, M., Wattjes, M.P., van der Molen, A.J., Jasperse, B., Mallio, C.A., Yousry, T., Quattrocchi, C.C. Use of gadolinium-based contrast agents in multiple sclerosis: A review by the ESMRMB-GREC and ESNR Multiple Sclerosis Working Group. Eur. Radiol., 34: 1726–1735, 2024; doi:10.1007/s00330-023-10151-y
Sastre-Garriga, J., Tintoré, M. Multiple sclerosis: Lesion location may predict disability in multiple sclerosis. Nat. Rev. Neurol., 6: 661–663, 2010; doi:10.1038/nrneurol.2010.161
Sheng, H., Zhao, B., Ge, Y. Blood perfusion and cellular microstructural changes associated with iron deposition in multiple sclerosis lesions. Front Neurol. 10:747, 2019; doi:10.3389/fneur.2019.00747
Song, S.K., Sun, S.W., Ramsbottom, M.J., Chang, C., Russell, J., Cross, A.H. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17: 1429–1436, 2002; doi:10.1006/nimg.2002.1267
Sormani, M.P., Stubinski, B., Cornelisse, P., Rocak, S., Li, D., De Stefano, N. Magnetic resonance active lesions as individual-level surrogate for relapses in multiple sclerosis. Mult. Scler. J., 17: 555–559, 2011; doi:10.1177/1352458510391837
Thaler, C., Faizy, T.D., Sedlacik, J., Holst, B., Stürner, K., Heesen, C., Stellmann, J.P., Fiehler, J., Siemonsen, S. T1 recovery is predominantly found in black holes and is associated with clinical improvement in patients with multiple sclerosis. AJNR Am J Neuroradiol., 38: 410–416, 2017; doi:10.3174/ajnr.A5004
Thompson, A.J., Banwell, B.L., Barkhof, F., Carroll, W.M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M.S., Fujihara, K., Galetta, S.L., Hartung, H.P., Kappos, L., Lublin, F.D., Marrie, R.A., Miller, A.E., Miller, D.H., Montalban, X., … Cohen, J.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol., 17: 162–173, 2018; doi:10.1016/S1474-4422(17)30470-2
Tsivgoulis, G., Katsanos, A.H., Grigoriadis, N., Hadjigeorgiou, G.M., Heliopoulos, I., Kilidireas, C., Voumvourakis, K. The effect of disease modifying therapies on brain atrophy in patients with relapsing-remitting multiple sclerosis: A systematic review and meta-analysis. PLoS One, 10: e0116511, 2015; doi:10.1371/journal.pone.0116511
van Munster, C.E.P., Uitdehaag, B.M.J. Outcome measures in clinical trials for multiple sclerosis. CNS Drugs, 31: 217–236, 2017; doi:10.1007/s40263-017-0412-5
Van Walderveen, M.A.A., Kamphorst, W., Scheltens, P., Van Waesberghe, J.H.T.M., Ravid, R., Valk, J., Polman, C.H., Barkhof, F. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology, 50: 1282–1288, 1998; doi:10.1212/WNL.50.5.1282
Wang, K.Y., Carlton, J., Guffey, D., Hutton, G.J., Moron, F.E. Histogram analysis of apparent diffusion coefficient and fluid-attenuated inversion recovery in discriminating between enhancing and nonenhancing lesions in multiple sclerosis. Clin. Imaging, 59: 64–68, 2020; doi:10.1016/j.clinimag.2019.08.005
Wattjes, M.P., Ciccarelli, O., Reich, D.S., Banwell, B., de Stefano, N., Enzinger, C., Fazekas, F., Filippi, M., Frederiksen, J., Gasperini, C., Hacohen, Y., Kappos, L., Li, D.K.B., Mankad, K., Montalban, X., Newsome, S. D., Oh, J., Palace, J., Rocca, M.A., … Oh, J. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol., 20: 653–670, 2021; doi:10.1016/S1474-4422(21)00095-8
Weinshenker, B.G., Bass, B., Rice, G P A., Noseworthy, J., Carriere, W., Baskerville, J., Ebers, G.C. The natural history of multiple sclerosis: A geographically based study: I. Clinical course and disability. Brain, 112: 133–146, 1989; doi:10.1093/brain/112.1.133
Werring, D.J., Brassat, D., Droogan, A.G., Clark, C.A., Symms, M.R., Barker, G.J., MacManus, D.G., Thompson, A.J., Miller, D.H. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis. A serial diffusion MRI study. Brain, 123: 1667–1677, 2000; doi:10.1093/brain/123.8.1667
Wiggermann, V., Hametner, S., Hernández-Torres, E., Kames, C., Endmayr, V., Kasprian, G., Höftberger, R., Li, D.K.B., Traboulsee, A., Rauscher, A. Susceptibility-sensitive MRI of multiple sclerosis lesions and the impact of normal-appearing white matter changes. NMR Biomed., 30: e3727, 2017; doi:10.1002/nbm.3727
Wisnieff, C., Ramanan, S., Olesik, J., Gauthier, S., Wang, Y., Pitt, D. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn. Reson. Med., 74: 564–570, 2015; doi:10.1002/mrm.25420
Yao, Y., Nguyen, T.D., Pandya, S., Zhang, Y., Hurtado Rúa, S., Kovanlikaya, I., Kuceyeski, A., Liu, Z., Wang, Y., Gauthier, S.A. Combining quantitative susceptibility mapping with automatic zero reference (QSM0) and myelin water fraction imaging to quantify iron-related myelin damage in chronic active MS lesions. AJNR Am. J. Neuroradiol., 39: 303–309, 2018; doi:10.3174/ajnr.A5482