Abele, J. 18F-DOPA II - PET Imaging Optimization. 2021; Retrieved from https://clinicaltrials.gov/study/NCT04706910
Arya, R., Haque, A.K.M.A., Shakya, H., Billah, Md.M., Parvin, A., Rahman, M.-M., Sakib, K.M., Faruquee, H.Md., Kumar, V., Kim, J.-J. Parkinson’s disease: biomarkers for diagnosis and disease progression. Int. J. Mol. Sci., 25: 12379, 2024; doi:10.3390/ijms252212379
Benamer, H.T.S., Patterson, J., Wyper, D.J., Hadley, D.M., Macphee, G.J.A., Grosset, D.G. Correlation of Parkinson’s disease severity and duration with123I-FP-CIT SPECT striatal uptake. Mov. Disord., 15: 692–698, 2000; doi:10.1002/1531-8257(200007)15:4<692::AID-MDS1014>3.0.CO;2-V
Bidesi, N.S.R., Vang Andersen, I., Windhorst, A.D., Shalgunov, V., Herth, M.M. The role of neuroimaging in Parkinson’s disease. J. Neurochem., 159: 660–689, 2021; doi:10.1111/jnc.15516
Boileau, I., Dagher, A., Leyton, M., Welfeld, K., Booij, L., Diksic, M., Benkelfat, C. Conditioned dopamine release in humans: a positron emission tomography [11 C]raclopride study with amphetamine. J. Neurosci., 27: 3998–4003, 2007; doi:10.1523/JNEUROSCI.4370-06.2007
Booij, J., Tissingh, G., Winogrodzka, A., van Royen, E.A. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur. J. Nucl. Med. Mol. Imaging, 26: 171–182, 1999; doi:10.1007/s002590050374
Breen, W.G., Youland, R.S., Giri, S., Jacobson, S.B., Pafundi, D.H., Brown, P.D., Hunt, C.H., Mahajan, A., Ruff, M.W., Kizilbash, S.H., Uhm, J.H., Routman, D.M., Jones, J.E., Brinkmann, D.H., Laack, N.N. Initial results of a phase II trial of 18F-DOPA PET-guided re-irradiation for recurrent high-grade glioma. J. Neurooncol., 158: 323–330, 2022; doi:10.1007/s11060-022-04011-w
Brooks, D.J., Ibanez, V., Sawle, G.V., Quinn, N., Lees, A.J., Mathias, C.J., Bannister, R., Marsden, C.D., Frackowiak, R.S.J. Differing patterns of striatal18 F‐dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann. Neurol., 28: 547–555, 1990; doi:10.1002/ana.410280412
Brooks, D.J., Pavese, N. Imaging biomarkers in Parkinson’s disease. Prog. Neurobiol., 95: 614–628, 2011; doi:10.1016/j.pneurobio.2011.08.009
Broussolle, E., Dentresangle, C., Landais, P., Garcia-Larrea, L., Pollak, P., Croisile, B., Hibert, O., Bonnefoi, F., Galy, G., Froment, J.C., Comar, D. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson’s disease. J. Neurol. Sci., 166: 141–151, 1999; doi:10.1016/S0022-510X(99)00127-6
Cheng, P.W.C., Chang, W.C., Lo, G.G., Chan, K.W.S., Lee, H.M.E., Hui, L.M.C., Suen, Y.N., Leung, Y.L.E., Au Yeung, K.M.P., Chen, S., Mak, K.F.H., Sham, P.C., Santangelo, B., Veronese, M., Ho, C.-L., Chen, Y.H.E., Howes, O.D. The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: a positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders. Neuropsychopharmacology, 45: 1870–1876, 2020; doi:10.1038/s41386-020-0740-x
Chevalme, Y.-M., Montravers, F., Vuillez, J.-P., Zanca, M., Fallais, C., Oustrin, J., Talbot, J.-N. FDOPA-(18F): a PET radiopharmaceutical recently registered for diagnostic use in countries of the European Union. Braz. Arch. Biol. Technol., 50: 77–90, 2007; doi:10.1590/S1516-89132007000600009
Deng, W.-P., Wong, K.A., Kirk, KennethL. Convenient syntheses of 2-, 5- and 6-fluoro- and 2,6-difluoro-l-DOPA. Tetrahedron Asymmetry, 13: 1135–1140, 2002; doi:10.1016/S0957-4166(02)00321-X
Dhawan, V., Niethammer, M., Lesser, M., Pappas, K., Hellman, M., Fitzpatrick, T., Quartarolo, L., Bjelke, D., Eidelberg, D., Chlay, T. Prospective FDOPA PET imaging study in human PD :our final step towards NDA approval. J. Nucl. Med., 61: suppl. 1, doi: 10.1007/s13139-022-00748-4
Egerton, A., Demjaha, A., McGuire, P., Mehta, M.A., Howes, O.D. The test–retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. NeuroImage, 50: 524–531, 2010; doi:10.1016/j.neuroimage.2009.12.058
FDA. NDA200655. 2019; Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/200655Orig1s000TOC.cfm
Heiss, W.D., Hilker, R. The sensitivity of 18‐fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson’s disease. Eur. J. Neurol., 11: 5–12, 2004; doi:10.1046/j.1351-5101.2003.00709.x
Hilker, R., Schweitzer, K., Coburger, S., Ghaemi, M., Weisenbach, S., Jacobs, A.H., Rudolf, J., Herholz, K., Heiss, W.D. Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch. Neurol., 62: 378, 2005; doi:10.1001/archneur.62.3.378
Howes, O.D., Montgomery, A.J., Asselin, M.-C., Murray, R.M., Valli, I., Tabraham, P., Bramon-Bosch, E., Valmaggia, L., Johns, L., Broome, M., McGuire, P.K., Grasby, P.M. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch. Gen. Psychiatry, 66: 13, 2009; doi:10.1001/archgenpsychiatry.2008.514
Ibrahim, N., Kusmirek, J., Struck, A.F., Floberg, J.M., Perlman, S.B., Gallagher, C., Hall, L.T. The sensitivity and specificity of F-DOPA PET in a movement disorder clinic. Am. J. Nucl. Med. Mol. Imaging, 6: 102–109, 2016; PMID: 27069770
Jokinen, P., Helenius, H., Rauhala, E., Brück, A., Olli Eskola, Rinne, J.O. Simple ratio analysis of 18F-fluorodopa uptake in striatal subregions separates patients with early Parkinson disease from healthy controls. J. Nucl. Med., 50: 893–899, 2009; doi:10.2967/jnumed.108.06157
Kaasinen, V., Kankare, T., Joutsa, J., Vahlberg, T. Presynaptic Striatal Dopaminergic Function in Atypical Parkinsonism: A Metaanalysis of Imaging Studies. J. Nucl. Med., 60: 1757–1763, 2019; doi:10.2967/jnumed.119.227140
Kaasinen, V., Vahlberg, T. Striatal dopamine in Parkinson disease: A meta‐analysis of imaging studies. Ann. Neurol., 82: 873–882, 2017; doi:10.1002/ana.25103
Kägi, G., Bhatia, K.P., Tolosa, E. The role of DAT-SPECT in movement disorders. J. Neurol. Neurosurg. Psychiatry, 81: 5–12, 2010; doi:10.1136/jnnp.2008.157370
Khalil, M.M., Tremoleda, J.L., Bayomy, T.B., Gsell, W. Molecular SPECT imaging: an overview. Int. J. Mol. Imaging, 2011: 1–15, 2011; doi:10.1155/2011/796025
Kuriakose, R., Stoessl, A.J. Imaging the nigrostriatal system to monitor disease progression and treatment-induced complications. Prog. Brain Res., 184: 177–192, 2010; doi:10.1016/S0079-6123(10)84009-9
Ledermann, K., von Känel, R., Berna, C., Sprott, H., Burckhardt, M., Jenewein, J., Garland, E.L., Martin-Sölch, C. Understanding and restoring dopaminergic function in fibromyalgia patients using a mindfulness-based psychological intervention: a [18F]-DOPA PET study. Study protocol for the FIBRODOPA study—a randomized controlled trial. Trials, 22: 864, 2021; doi:10.1186/s13063-021-05798-1
Ludolph, A.G., Kassubek, J., Schmeck, K., Glaser, C., Wunderlich, A., Buck, A.K., Reske, S.N., Fegert, J.M., Mottaghy, F.M. Dopaminergic dysfunction in attention deficit hyperactivity disorder (ADHD), differences between pharmacologically treated and never treated young adults: A 3,4-dihdroxy-6-[18F]fluorophenyl-l-alanine PET study. NeuroImage, 41: 718–727, 2008; doi:10.1016/j.neuroimage.2008.02.025
Ma, Y., Tang, C., Chaly, T., Greene, P., Breeze, R., Fahn, S., Freed, C., Dhawan, V., Eidelberg, D. Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18)F-FDOPA PET outcomes. J. Nucl. Med., 51: 7–15, 2010; doi:10.2967/jnumed.109.066811
Maetzler, W., Liepelt, I., Berg, D. Progression of Parkinson’s disease in the clinical phase: potential markers. Lancet Neurol., 8: 1158–1171, 2009; doi:10.1016/S1474-4422(09)70291-1
Marek, K., Chowdhury, S., Siderowf, A., Lasch, S., Coffey, C.S., Caspell‐Garcia, C., Simuni, T., Jennings, D., Tanner, C.M., Trojanowski, J.Q., Shaw, L.M., Seibyl, J., Schuff, N., Singleton, A., Kieburtz, K., Toga, A.W., Mollenhauer, B., Galasko, D., … the Parkinson’s Progression Markers Initiative. The Parkinson’s progression markers initiative (PPMI) – establishing a PD biomarker cohort. Ann. Clin. Transl. Neurol., 5: 1460–1477, 2018; doi:10.1002/acn3.644
Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., Coffey, C., Kieburtz, K., Flagg, E., Chowdhury, S., Poewe, W., Mollenhauer, B., Klinik, P.-E., Sherer, T., Frasier, M., Meunier, C., Rudolph, A., Casaceli, C., … Taylor, P. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol., 95: 629–635, 2011; doi:10.1016/j.pneurobio.2011.09.005
Marek, K., Jennings, D., Seibyl, J. Neuroimaging in Parkinson’s Disease. in Handbook of Parkinson’s disease, 2003.
Meiser, J., Weindl, D., Hiller, K. Complexity of dopamine metabolism. Cell Commun. Signal., 11: 34, 2013; doi:10.1186/1478-811X-11-34
Michler, E., Hoberück, S., Martino, F., Platzek, I., Kotzerke, J. Diagnosis of Huntington’s disease via sequential 18 F-DOPA and 18 F-FDG PET/MRI. NuklearMedizin, 58: 403–404, 2019; doi:10.1055/a-0972-0698
Morrish, P.K., Rakshi, J.S., Bailey, D.L., Sawle, G.V., Brooks, D.J. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J. Neurol. Neurosurg. Psychiatry, 64: 314–319, 1998; doi:10.1136/jnnp.64.3.314
Morrish, P.K., Sawle, G.V., Brooks, D.J. An [18F]dopa–PET and clinical study of the rate of progression in Parkinson’s disease. Brain, 119: 585–591, 1996; doi:10.1093/brain/119.2.585
Nakamura, T., Dhawan, V., Chaly, T., Fukuda, M., Ma, Y., Breeze, R., Greene, P., Fahn, S., Freed, C., Eidelberg, D. Blinded positron emission tomography study of dopamine cell implantation for Parkinson’s disease. Ann. Neurol., 50: 181–187, 2001; doi:10.1002/ana.1075
Nandhagopal, R., Kuramoto, L., Schulzer, M., Mak, E., Cragg, J., Lee, C.S., McKenzie, J., McCormick, S., Samii, A., Troiano, A., Ruth, T.J., Sossi, V., de la Fuente-Fernandez, R., Calne, D.B., Stoessl, A.J. Longitudinal progression of sporadic Parkinson’s disease: a multi-tracer positron emission tomography study. Brain, 132: 2970–2979, 2009; doi:10.1093/brain/awp209
Niethammer, M., Feigin, A., Eidelberg, D. Functional neuroimaging in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2: a009274, 2012; doi:10.1101/cshperspect.a009274
Nurmi, E., Ruottinen, H.M., Bergman, J., Haaparanta, M., Solin, O., Sonninen, P., Rinne, J.O. Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study. Mov. Disord., 16: 608–615, 2001; doi:10.1002/mds.1139
Otsuka, M., Ichiya, Y., Kuwabara, Y., Hosokawa, S., Sasaki, M., Yoshida, T., Fukumura, T., Masuda, K., Kato, M. Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlations with the three main symptoms. J. Neurol. Sci., 136: 169–173, 1996; doi:10.1016/0022-510X(95)00316-T
Pavese, N., Andrews, T.C., Brooks, D.J., Ho, A.K., Rosser, A.E., Barker, R.A., Robbins, T.W., Sahakian, B.J., Dunnett, S.B., Piccini, P. Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain, 126: 1127–1135, 2003; doi:10.1093/brain/awg119
Pirker, W. Correlation of dopamine transporter imaging with parkinsonian motor handicap: How close is it? Mov. Disord., 18 Suppl 7: S43–S51, 2003; doi:10.1002/mds.10579
Rahmim, A., Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun., 29: 193–207, 2008; doi:10.1097/MNM.0b013e3282f3a515
Seppi, K., Scherfler, C., Donnemiller, E., Virgolini, I., Schocke, M.F.H., Goebel, G., Mair, K.J., Boesch, S., Brenneis, C., Wenning, G.K., Poewe, W. Topography of dopamine transporter availability in progressive supranuclear palsy: a voxelwise [123I]beta-CIT SPECT analysis. Arch. Neurol., 63: 1154–1160, 2006; doi:10.1001/archneur.63.8.1154
Simuni, T., Siderowf, A., Lasch, S., Coffey, C.S., Caspell‐Garcia, C., Jennings, D., Tanner, C.M., Trojanowski, J.Q., Shaw, L.M., Seibyl, J., Schuff, N., Singleton, A., Kieburtz, K., Toga, A.W., Mollenhauer, B., Galasko, D., Chahine, L.M., Weintraub, D., … the Parkinson’s Progression Marker Initiative*. Longitudinal change of clinical and biological measures in early Parkinson’s disease: Parkinson’s progression markers initiative cohort. Mov. Disord., 33: 771–782, 2018; doi:10.1002/mds.27361
Smith, Y., Villalba, R. Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov. Disord., 23 Suppl 3: S534-47, 2008; doi: 10.1002/mds.22027
Snow, B.J., Tooyama, I., McGeer, E.G., Yamada, T., Calne, D.B., Takahashi, H., Kimura, H. Human positron emission tomographic [18 F]Fluorodopa studies correlate with dopamine cell counts and levels. Ann. Neurol., 34: 324–330, 1993; doi:10.1002/ana.410340304
Stoessl, A.J. Neuroimaging in Parkinson’s disease: from pathology to diagnosis. Parkinsonism Relat. Disord., 18: S55–S59, 2012; doi:10.1016/S1353-8020(11)70019-0
Strafella, A.P., Bohnen, N.I., Perlmutter, J.S., Eidelberg, D., Pavese, N., van Eimeren, T., Piccini, P., Politis, M., Thobois, S., Ceravolo, R., Higuchi, M., Kaasinen, V., Masellis, M., Peralta, M.C., Obeso, I., Pineda-Pardo, J.Á., Cilia, R., Ballanger, B., … on behalf of IPMDS-Neuroimaging Study Group. Molecular imaging to track Parkinson’s disease and atypical parkinsonisms: new imaging frontiers. Mov. Disord., 32: 181–192, 2017; doi:10.1002/mds.26907
Tai, Y.F., Ahsan, R.L., De Yébenes, J.G., Pavese, N., Brooks, D.J., Piccini, P. Characterization of dopaminergic dysfunction in familial progressive supranuclear palsy: an 18F-dopa PET study. J. Neural Transm., 114: 337–340, 2007; doi:10.1007/s00702-006-0536-0
Tian, M., Zuo, C., Cahid Civelek, A., Carrio, I., Watanabe, Y., Kang, K.W., Murakami, K., Prior, J.O., Zhong, Y., Dou, X., Yu, C., Jin, C., Zhou, R., Liu, F., Li, X., Lu, J., Zhang, H., Wang, J. International consensus on clinical use of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Eur. J. Nucl. Med. Mol. Imaging, 51: 434–442, 2024; doi:10.1007/s00259-023-06403-0
Trujillo, P., O’Rourke, K.R., Roman, O.C., Song, A.K., Hett, K., Cooper, A., Black, B.K., Donahue, M.J., Shibao, C.A., Biaggioni, I., Claassen, D.O. Central involvement in pure autonomic failure: insights from neuromelanin‐sensitive magnetic resonance imaging and 18 F‐fluorodopa‐positron emission tomography. Mov. Disord., Advance online publication, 2025; doi:10.1002/mds.30119
van Eimeren, T., Antonini, A., Berg, D., Bohnen, N., Ceravolo, R., Drzezga, A., Höglinger, G.U., Higuchi, M., Lehericy, S., Lewis, S., Monchi, O., Nestor, P., Ondrus, M., Pavese, N., Peralta, M.C., Piccini, P., Pineda‐Pardo, J.Á., Rektorová, I., … MDS Neuroimaging Study Group and the JPND Working Group ASAP‐SynTau. Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: proposal for a neuroimaging biomarker utility system. Alzheimers Dement. (Amst)., 11: 301–309, 2019; doi:10.1016/j.dadm.2019.01.011
Vingerhoets, F.J.G., Snow, B.J., Tetrud, J.W., Langston, J.W., Schulzer, M., Calne, D.B. Positron emission tomographic evidence for progression of human MPTP‐induced dopaminergic lesions. Ann. Neurol., 36: 765–770, 1994; doi:10.1002/ana.410360513
Volkow, N. D., Fowler, J.S., Wang, G., Ding, Y., Gatley, S.J. Mechanism of action of methylphenidate: insights from PET imaging studies. J. Atten. Disord., 6 Suppl 1: S31–S43, 2002; doi:10.1177/070674370200601S05
Volkow, Nora D., Wang, G., Fowler, J.S., Logan, J., Schlyer, D., Hitzemann, R., Lieberman, J., Angrist, B., Pappas, N., MacGregor, R., Burr, G., Cooper, T., Wolf, A.P. Imaging endogenous dopamine competition with [ 11 C]raclopride in the human brain. Synapse, 16: 255–262, 1994; doi:10.1002/syn.890160402
Walker, Z., Rodda, J. Dopaminergic imaging: clinical utility now and in the future. Int. Psychogeriatr., 23 Suppl 2: S32-40, 2011; doi: 10.1017/S1041610211000883
Whone, A.L., Bailey, D.L., Remy, P., Pavese, N., Brooks, D.J. A technique for standardized central analysis of 6-(18)F-fluoro-L-DOPA PET data from a multicenter study. J. Nucl. Med., 45: 1135–1145, 2004; PMID: 15235059
Whone, A.L., Watts, R.L., Stoessl, A.J., Davis, M., Reske, S., Nahmias, C., Lang, A.E., Rascol, O., Ribeiro, M.J., Remy, P., Poewe, W.H., Hauser, R.A., Brooks, D.J., REAL‐PET Study Group. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL‐PET study. Ann. Neurol., 54: 93–101, 2003; doi:10.1002/ana.10609
Zhao, Y., Wu, P., Wu, J., Brendel, M., Lu, J., Ge, J., Tang, C., Hong, J., Xu, Q., Liu, F., Sun, Y., Ju, Z., Lin, H., Guan, Y., Bassetti, C., Schwaiger, M., Huang, S.-C., Rominger, A., … Shi, K. Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning. Eur. J. Nucl. Med. Mol. Imaging, 49: 2798–2811, 2022; doi:10.1007/s00259-022-05804-x